Restarting the Tabletop Drive System .. 13
Installing the LTO Driver Software ... 14
Registering the LTO-4 Half-Height Tape Drive ... 14

Chapter 3
Operation
Understanding the Front Panel Display .. 15
Using LTO Tape Cartridges ... 18
 Loading a Tape Cartridge .. 18
 Unloading a Tape Cartridge ... 18
 Write Protecting a Tape Cartridge .. 18
 Tape Cartridge Care and Maintenance ... 19
Cleaning the Tape Drive ... 20
Performing an Emergency Cartridge Eject .. 22

Chapter 4
Theory
Track Layout .. 23
Recording Method .. 25
Data Buffer .. 25
Data Integrity .. 25
 Error-correction Code (ECC) .. 26
 Servo-tracking Faults .. 27
Data Compression .. 27
 Data Compression Considerations ... 28
 Intelligent Data Compression .. 29

Chapter 5
Specifications
Physical Specifications .. 32
Power Specifications ... 34
Drive Performance Specifications ... 35
Environmental Requirements .. 37
Injected Noise Specifications ... 38
Reliability Specifications .. 38
 Mean Time Between Failures .. 39
 Mean Time to Replace .. 39
LTO Cartridge Specifications .. 39
 Environmental Considerations .. 39
Figures

Figure 1 Internal LTO-4 Half-Height Tape Drive .. 2
Figure 2 Acceptable Mounting Orientation .. 9
Figure 3 Internal Tape Drive Mounting Holes ... 10
Figure 4 Internal Drive Interface and Power Connectors 11
Figure 5 Tabletop Drive Interface and Power Cable Connectors 13
Figure 6 Front Panel Display .. 16
Figure 7 Ultrium Tape Cartridge Write-Protect Switch 19
Figure 8 Layout of the Tracks on LTO Ultrium Tapes 24
Figure 9 LTO-4 Half-Height Tape Drive Dimensions 33
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Performance Features and Capabilities</td>
<td>3</td>
</tr>
<tr>
<td>Table 2</td>
<td>Front Panel Display Indications</td>
<td>16</td>
</tr>
<tr>
<td>Table 3</td>
<td>Physical Specifications</td>
<td>32</td>
</tr>
<tr>
<td>Table 4</td>
<td>Voltage and Current Specifications</td>
<td>34</td>
</tr>
<tr>
<td>Table 5</td>
<td>Power Dissipation</td>
<td>34</td>
</tr>
<tr>
<td>Table 6</td>
<td>Drive Performance Specifications</td>
<td>35</td>
</tr>
<tr>
<td>Table 7</td>
<td>Environmental Requirements</td>
<td>37</td>
</tr>
<tr>
<td>Table 8</td>
<td>Reliability Specifications</td>
<td>38</td>
</tr>
<tr>
<td>Table 9</td>
<td>Environmental Tolerances</td>
<td>40</td>
</tr>
</tbody>
</table>
This guide is written for users of the Quantum LTO-4 Half-Height Tape Drive.

This guide provides information about the LTO-4 Half-Height Tape Drive including:

- Installing the drive
- Basic drive operations
- Maintenance
- Specifications
- Troubleshooting

This guide is organized as follows:

- **Chapter 1, Introduction**, provides an overview of LTO and Ultrium technologies, and summarizes the drive’s key features.
- **Chapter 2, Installation Procedures**, describes handling precautions, unpacking tips, and installation instructions.
- **Chapter 3, Operation**, describes the operation and maintenance of the drive.
• **Chapter 4, Theory**, describes the theory of operation behind the drive, including the technology used in various drive components.

• **Chapter 5, Specifications**, provides drive and cartridge specifications.

• **Chapter 6, Troubleshooting Guide** provides troubleshooting procedures you can follow if you encounter a problem with your drive.

• **Appendix A, Installation Checklists**, provides abbreviated quick-start checklists for users who are already familiar with the installation procedures.

• **Appendix B, Disposal of Electrical & Electronic Equipment**, provides instructions for proper disposal of unwanted electrical and electronic equipment.

• **Appendix C, Regulatory Compliances**, identifies drive compliance with safety and EMC regulations.

This guide also has an index.

Notational Conventions

This guide uses the following conventions:

Note: Notes emphasize important information related to the main topic.

Tech Tip: Tech Tips provide technical information which may be helpful in performing the procedure.

Caution: Cautions indicate potential hazards to equipment and are included to prevent damage to equipment.

Warning: Warnings indicate potential hazards to personal safety and are included to prevent injury.
The following subsection identifies the primary documents that are related to the LTO-4 Half-Height Tape Drive.

Standards Conformance

The Small Computer System Interface is described in standards that include several versions and a number of individual documents. The original Small Computer System Interface Standard, X3.131-1986, is referred to as SCSI-1. SCSI-1 was revised, resulting in the Small Computer System Interface – 2 (X3.131-1994), referred to as SCSI-2. The set of SCSI-3 standards are collectively referred to as SCSI-3. The applicable ANSI standards are as follows:

- INCITS Technical Committee T10 (SCSI Storage Interfaces) Standards:
 - SCSI Architecture Model – 3 (SAM-3) INCITS 402-2005
 - SCSI Architecture Model – 4 (SAM-4) in development
 - Automation/Drive Interface – Commands (ADC) INCITS 403-2005
 - Automation/Drive Interface Commands (ADC-2) in development
 - Automation/Drive Interface – Transport Protocol (ADT) INCITS 406-2005
 - Automation/Drive Interface – Transport Protocol – 2 (ADT-2) in development
 - Fibre Channel Protocol for SCSI (FCP) INCITS 269-1996
 - Fibre Channel Protocol for SCSI, Third Version - 3 (FCP-3) INCITS 416-2006
 - Fibre Channel Protocol for SCSI, Fourth Version - 4 (FCP-3) in development
 - SCSI-3 Medium Changer Commands (SMC) INCITS 314-1998
 - SCSI Media Changer Commands – 2 (SMC-2) INCITS 382-2004
• SCSI Media Changer Commands – 3 (SMC-3) in development
• SCSI Parallel Interface – 3 (SPI-3) INCITS 336-2000
• SCSI Parallel Interface-4 (SPI-4) INCITS 362-2002
• SCSI Parallel Interface-5 (SPI-5) INCITS 367-2003
• SCSI-3 Primary Commands (SPC) INCITS 301-1997
• SCSI Primary Commands – 2 (SPC-2) INCITS 351-2001
• SCSI Primary Commands – 3 (SPC-3) INCITS 408-2005
• SCSI Primary Commands – 4 (SPC-4) in development
• SCSI-3 Stream Commands (SSC) INCITS 335-2000
• SCSI Stream Commands – 2 (SSC-2) INCITS 380-2003
• SCSI Stream Commands – 3 (SSC-3) in development
• Serial Attached SCSI – (SAS) INCITS 376-2003
• Serial Attached SCSI – 1.1 (SAS-1.1) INCITS 417-2006
• Serial Attached SCSI – 2 (SAS-2) in development

• INCITS Technical Committee T11 (Device Level Interfaces) Standards
 • Fibre Channel Arbitrated Loop (FC-AL-2) Amendment 1 INCITS 332.1999/AM1-2003
 • Fibre Channel Generic Services-4 (FC-GS-4) INCITS 387-2004
 • Fibre Channel Generic Services-5 (FC-GS-5) in development
 • Fibre Channel Generic Services-6 (FC-GS-6) in development
 • Fibre Channel - Link Services (FC-LS) in development

Note: The term “SCSI” is used wherever it is not necessary to distinguish between the versions of SCSI.
Quantum company contacts are listed below.

Quantum Corporate Headquarters

To order documentation on the LTO-4 Half-Height Tape Drive or other products contact:

Quantum Corporation
P.O. Box 57100
Irvine, CA 92619-7100
(949) 856-7800
(800) 284-5101

Technical Publications

To comment on existing documentation send e-mail to:

doc-comments@quantum.com

Quantum Home Page

Visit the Quantum home page at:

http://www.quantum.com

Customer Support

Quantum Global Services provides 24-hour support that can be reached at:

North/South America: (949) 725-2100 or (800) 284-5101
Asia/Pacific Rim: (International Code) + 61 7 3839 0988
Europe/Middle East/Africa: (International Code) + 44 (0) 1256 848748

Send faxes for Global Services to:

North/South America: (949) 725-2176
Asia/Pacific Rim: (International Code) + 61 7 3839 0955
Europe/Middle East/Africa: (International Code) + 44 (0) 1256 848777
Send e-mail for Global Services to:

Asia/Pacific Rim: apachelp@quantum.com
Europe/Middle East/Africa: eurohelp@quantum.com

Visit our website:

www.quantum.com/support
This chapter provides an introductory overview of the Quantum LTO-4 Half-Height Tape Drive. Topics include:

- **Overview**
- **Drive Models**
- **Features**

Overview

The Quantum LTO-4 Half-Height Tape Drive is a high-performance 16-channel tape drive that complies with the LTO interchange specifications. The drive is suited for mid-range to high-end servers, mainframe systems, and tape library automation systems.

The LTO-4 Half-Height Tape Drive uses Ultrium data cartridges. Its capacity is maximized using intelligent data compression. The drive has a native capacity of 800 Gbytes (1,600 Gbytes assuming 2:1 data compression).
The LTO-4 Half-Height Tape Drive has a 5¼-inch half-height form factor with automatic electromechanical cartridge soft load. It is available in two models:

- Internal
- Tabletop

Drive Models

Internal

The internal model (see figure 1) is a 5¼-inch drive that you can install inside the drive bay of a:

- Computer workstation or server system
- Quantum rackmount drive enclosure

Tabletop

The tabletop model is a 5¼-inch drive that is already mounted inside a stand-alone external drive enclosure with a built-in power supply.

![Figure 1 Internal LTO-4 Half-Height Tape Drive](image)
Table 1 describes the key performance features and capabilities of the LTO-4 Half-Height Tape Drive.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cartridge memory</td>
<td>Stores pertinent information about the media to enable fast cartridge loading</td>
</tr>
<tr>
<td>Chassis</td>
<td>Shock damped and isolated</td>
</tr>
<tr>
<td>Data buffering</td>
<td>128 Mbytes for high performance</td>
</tr>
<tr>
<td>Head positioner</td>
<td>Patented proprietary mechanism for increased data integrity</td>
</tr>
<tr>
<td>Intelligent data</td>
<td>Analyzes compression factors before recording to maximize performance and</td>
</tr>
<tr>
<td>compression</td>
<td>capacity</td>
</tr>
<tr>
<td>Interface</td>
<td>Serial-attached SCSI (SAS)</td>
</tr>
<tr>
<td>LSI circuitry</td>
<td>Custom designed for fast, efficient data processing</td>
</tr>
<tr>
<td>Native data transfer rate</td>
<td>Up to 120 Mbytes per second</td>
</tr>
<tr>
<td>Read channel</td>
<td>Third generation for increased maturity and data integrity</td>
</tr>
<tr>
<td>RISC processors</td>
<td>Provide fast, efficient data processing</td>
</tr>
<tr>
<td>SmartVerify</td>
<td>Includes two levels of ECC for extra data safety and error protection</td>
</tr>
<tr>
<td>Supported platforms</td>
<td>A wide variety of Windows and UNIX systems</td>
</tr>
<tr>
<td>TapeAlert</td>
<td>Monitors and reports drive performance</td>
</tr>
<tr>
<td>Tape picking</td>
<td>Enhanced implementation for increased reliability</td>
</tr>
</tbody>
</table>
Feature Description

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable-speed transfer</td>
<td>Variable speeds for matching with the host to:</td>
</tr>
<tr>
<td></td>
<td>• Optimize data transfers</td>
</tr>
<tr>
<td></td>
<td>• Shorten backup times</td>
</tr>
<tr>
<td></td>
<td>• Increase reliability</td>
</tr>
</tbody>
</table>
Chapter 2

Installation Procedures

This chapter provides detailed installation instructions for both the internal and tabletop models of the Quantum LTO-4 Half-Height Tape Drive, including:

- **Before Installing the LTO-4 Half-Height Tape Drive**, which includes:
 - **Handling Precautions and Installation Guidelines**
 - **Preinstallation Requirements** on page 7
 - **Unpacking and Inspecting the Drive** on page 7

- Detailed procedures for:
 - **Installing the Internal LTO-4 Half-Height Tape Drive** on page 8
 - **Installing the Tabletop LTO-4 Half-Height Tape Drive** on page 12
 - **Installing the LTO Driver Software** on page 14, optional/when required
 - **Registering the LTO-4 Half-Height Tape Drive** on page 14

Optionally, experienced users who are familiar with installing the LTO-4 Half-Height Tape Drive can refer to the quick-start checklists in **appendix A** on page 63 of this guide. Each checklist provides abbreviated installation instructions, with references to the corresponding detailed procedures in this chapter.
Before Installing the LTO-4 Half-Height Tape Drive

Handling Precautions and Installation Guidelines

Always observe the following precautions and guidelines when handling and installing LTO-4 Half-Height Tape Drives:

- Internal, at all times
- Tabletop, when removed from its free-standing enclosure

<table>
<thead>
<tr>
<th>Handling Precautions</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Internal drives have exposed components that are sensitive to static electricity. To reduce the possibility of damage from static discharge, the drives are packaged in a protective antistatic bag. Do not remove the drive from the antistatic bag until you are ready to install it.</td>
</tr>
<tr>
<td>• Wear an ESD-preventive grounding wrist strap or observe similar ESD precautions when working with the drive. Be sure the wrist strap makes good skin contact. Do not remove the wrist strap until you finish working with the drive.</td>
</tr>
<tr>
<td>Also, avoid contact between the drive, other equipment, and clothing. The wrist strap only protects the equipment from ESD voltages on the body; ESD voltages on clothing can still cause damage.</td>
</tr>
<tr>
<td>• Before removing the drive from the antistatic bag, touch a grounded metal surface to discharge any static electricity buildup from your body.</td>
</tr>
</tbody>
</table>

(continued)
Before installing the LTO-4 Half-Height Tape Drive, make sure you have:

- A serial SCSI host bus adapter (HBA) installed and properly configured in the host computer
- Interface components, either:
 - 7-pin 1x SATA style interface cable for an internal drive
 - 26-pin SFF-8088 mini-SAS style interface cable for a tabletop drive
- Backup application software that supports the tape drive. For a list of the backup software applications that have been tested with the LTO-4 Half-Height Tape Drive, please visit our website at:

 www.quantum.com/support

Although each LTO-4 Half-Height Tape Drive is inspected and carefully packaged at the factory, damage can occur:

- In shipment
- When being unpacked
Observe the handling precautions listed in Handling Precautions and Installation Guidelines and carefully unpack and inspect the LTO-4 Half-Height Tape Drive as follows:

1. Visually inspect the shipping container and notify your carrier immediately of any damage.
2. Place the shipping container on a flat, clean, stable surface and carefully remove the contents.
3. Visually inspect the LTO-4 Half-Height Tape Drive and notify your Quantum representative immediately of any damage.
4. Always save the shipping container and packing materials for any future reshipment.

Installing the Internal LTO-4 Half-Height Tape Drive

To install the internal LTO-4 Half-Height Tape Drive, complete the following procedures in the order presented:

1. Mounting the Internal Tape Drive
2. Connecting the Internal Drive Interface and DC Power Cables on page 10
3. Restarting the Internal Tape Drive System on page 11
4. Installing the LTO Driver Software on page 14, if required
5. Registering the LTO-4 Half-Height Tape Drive on page 14
Mounting the Internal Tape Drive

You can mount the internal LTO-4 Half-Height Tape Drive either horizontally or vertically, but not upside down (see figure 2).

<table>
<thead>
<tr>
<th>IF you mount the drive . . .</th>
<th>THEN the . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>horizontally,</td>
<td>base of the drive must be within 15 degrees of horizontal.</td>
</tr>
<tr>
<td>vertically,</td>
<td>side of the drive should be within 5 degrees of horizontal.</td>
</tr>
</tbody>
</table>

Mount the drive in a 5.25-inch, half-height drive bay as follows:

1 As required:
 a Save and close your open files and terminate all running applications.
 b Shut down the workstation or server system.
 c Disconnect the system AC power cord from the facility AC power receptacle.

2 Remove the cover from the workstation or server system.

 Note: See your computer manufacturer’s instructions for the proper procedures to remove the cover.

3 Select an available 5.25-inch half-height bay and, if required, remove the bay cover.
4 Position the drive in the bay and align either the upper or lower mounting holes—whichever is appropriate—with the holes in the chassis (see figure 3).

5 Secure the drive using two M3.0 X 5 metric screws on each side.

Caution: Using screws longer than 5 mm can damage the drive. *Do not* use screws longer than 5 mm to secure the internal LTO-4 Half-Height Tape Drive.

After mounting the internal LTO-4 Half-Height Tape Drive, proceed to **Connecting the Internal Drive Interface and DC Power Cables** in the following subsection.

Figure 3 Internal Tape Drive Mounting Holes

Connecting the Internal Drive Interface and DC Power Cables

As shown in **figure 4**, the rear panel of the internal LTO-4 Half-Height Tape Drive has connectors for:

- A 7-pin 1x SATA style interface cable
- A serial library interface cable
- The internal drive DC power cable

Connect the interface and DC power cables to the internal drive as follows:

1 Verify that the system is shut down and the AC power cord is disconnected from the facility AC power receptacle.

2 Attach the internal SAS interface cable to the 7-pin 1x SATA style SAS connector on the back of the drive.
Installing the Internal LTO-4 Half-Height Tape Drive

3 If you are installing the internal LTO-4 Half-Height Tape Drive in a tape library system, connect the RS-422 serial interface cable to the serial library port on the back of the drive. (The serial library port is not used in workstation or server systems.)

4 Connect the internal drive DC power cable to the DC power connector on the back of the drive.

5 Reinstall the system cover.

6 Reconnect the system AC power cord to the facility AC power receptacle.

After connecting the interface and DC power cables, proceed to Restarting the Internal Tape Drive System in the following subsection.

Restarting the Internal Tape Drive System

After connecting the internal drive interface and DC power cables:

1 Restart the workstation or server system.

2 Refer to the operating procedures in chapter 3 to verify that the internal LTO-4 Half-Height Tape Drive comes on and completes the Power On Self Test (POST) functions.

3 As required, proceed to either:
 • Installing the LTO Driver Software on page 14
 • Registering the LTO-4 Half-Height Tape Drive on page 14
Chapter 2 Installation Procedures
Installing the Tabletop LTO-4 Half-Height Tape Drive

Installing the Tabletop LTO-4 Half-Height Tape Drive

The tabletop LTO-4 Half-Height Tape Drive is a compact external drive that connects to the host computer through an external serial-attached SCSI (SAS) port.

Do not attempt to install the LTO-4 Half-Height Tape Drive until you have reviewed Handling Precautions and Installation Guidelines on page 6.

To install the tabletop LTO-4 Half-Height Tape Drive, complete the following procedures in the order presented:

1. Connecting the Tabletop Drive Interface and AC Power Cables on page 12
2. Connecting the Tabletop Drive Interface and AC Power Cables on page 12
3. Restarting the Tabletop Drive System on page 13
4. Installing the LTO Driver Software on page 14, if required
5. Registering the LTO-4 Half-Height Tape Drive on page 14

Connecting the Tabletop Drive Interface and AC Power Cables

As shown in figure 5, the rear panel of the tabletop LTO-4 Half-Height Tape Drive has connectors for:

- A 26-pin SFF-8088 mini-SAS style interface cable
- The AC power cable

Connect the interface and AC power cables to the tabletop drive as follows:

1. As required:
 a. Save and close your open files and terminate all running applications.
 b. Shut down the workstation or server system.
 c. Disconnect the system AC power cord from the facility AC power receptacle.
Chapter 2 Installation Procedures
Installing the Tabletop LTO-4 Half-Height Tape Drive

2 Attach the external SAS interface cable to the 26-pin SFF-8088 mini-SAS connector on the back of the drive.

3 Verify that the tabletop LTO-4 Half-Height Tape Drive AC power switch is set to the off position, and connect the AC power cord to the power connector on the back of the drive.

4 Connect the drive AC power cord to the facility AC power receptacle.

5 Reconnect the workstation or server system AC power cord to the facility AC power receptacle.

After connecting the tabletop drive interface and AC power cables, proceed to Restarting the Tabletop Drive System in the following subsection.

Restarting the Tabletop Drive System

After connecting the tabletop drive interface and AC power cables:

1 Set the tabletop LTO-4 Half-Height Tape Drive power switch to the on position.

2 Restart the workstation or server system.

3 Refer to the operating procedures in chapter 3 to verify that the tabletop LTO-4 Half-Height Tape Drive comes on and completes the Power On Self Test (POST) functions.
As required, proceed to either:

- Installing the LTO Driver Software
- Registering the LTO-4 Half-Height Tape Drive

Installing the LTO Driver Software

If you intend to use the LTO-4 Half-Height Tape Drive with the Microsoft® native backup applet on a Windows 2000, Windows Server® 2003, Windows XP®, or Windows Vista operating system, install the appropriate version of the LTO driver software. (See the Downloads page for LTO-4 drivers under Standalone Tape Drives on the Quantum support website at www.quantum.com/support.)

Note: The LTO driver software is not necessary with commercial backup application software.

Registering the LTO-4 Half-Height Tape Drive

After installing the LTO-4 Half-Height Tape Drive, be sure to register it via the Quantum website at:

www.quantum.com/registration

Registering the drive ensures that you will receive the latest technical information about the drive, as well as other product, service, and support information.
This chapter describes how to operate the LTO-4 Half-Height Tape Drive. Topics covered in this chapter are:

- Understanding the Front Panel Display
- Using LTO Tape Cartridges on page 18
- Cleaning the Tape Drive on page 20
- Performing an Emergency Cartridge Eject on page 22

Understanding the Front Panel Display

As shown in figure 6, to reflect the operating condition of the drive, the LTO-4 Half-Height Tape Drive front panel display has:

- A seven-segment LED display that provides a single character code for status, diagnostic, and maintenance functions
- An LED dot display that augments the seven-segment LED
- A two-color (amber/green) status LED

The on/steady, on/flashing, or off condition of the front panel LEDs indicate the various drive conditions as shown in table 2.
Table 2: Front Panel Display Indications

<table>
<thead>
<tr>
<th>Drive Condition</th>
<th>Seven-segment LED</th>
<th>LED Dot</th>
<th>Two-color Status LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powered off</td>
<td>Blank</td>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>Powered on</td>
<td>Blank</td>
<td>Off</td>
<td>Green</td>
</tr>
<tr>
<td>Initializing/power-on self-tests underway</td>
<td>Post pattern</td>
<td>Flashing</td>
<td>Amber</td>
</tr>
<tr>
<td>Successful initialization/power-on self-tests</td>
<td>Blank</td>
<td>On for 3 seconds</td>
<td>Green</td>
</tr>
<tr>
<td>Active/busy or loading or unloading a cartridge</td>
<td>Blank</td>
<td>Off</td>
<td>Flashing green</td>
</tr>
<tr>
<td>Ready with cartridge loaded</td>
<td>Blank</td>
<td>Off</td>
<td>Green</td>
</tr>
<tr>
<td>Write-protected cartridge loaded</td>
<td>P</td>
<td>Off</td>
<td>Flashing amber</td>
</tr>
<tr>
<td>Downloading or updating firmware</td>
<td>F</td>
<td>Flashing</td>
<td>Flashing amber</td>
</tr>
<tr>
<td>Running diagnostics</td>
<td>Function-dependent</td>
<td>Flashing</td>
<td>Amber</td>
</tr>
<tr>
<td>Cleaning required</td>
<td>C</td>
<td>On</td>
<td>Flashing amber</td>
</tr>
<tr>
<td>Cleaning operation in progress</td>
<td>C</td>
<td>Flashing</td>
<td>Flashing green</td>
</tr>
<tr>
<td>Expired cleaning cartridge detected</td>
<td>7</td>
<td>Off</td>
<td>Flashing amber</td>
</tr>
</tbody>
</table>

![Front Panel Display Diagram](image)
<table>
<thead>
<tr>
<th>Drive Condition</th>
<th>Seven-segment LED</th>
<th>LED Dot</th>
<th>Two-color Status LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature fault</td>
<td>1</td>
<td>Off</td>
<td>Flashing amber</td>
</tr>
<tr>
<td>Power fault</td>
<td>2</td>
<td>Off</td>
<td>Flashing amber</td>
</tr>
<tr>
<td>Firmware fault</td>
<td>3</td>
<td>Off</td>
<td>Flashing amber</td>
</tr>
<tr>
<td>Firmware/hardware fault</td>
<td>4</td>
<td>Off</td>
<td>Flashing amber</td>
</tr>
<tr>
<td>Hardware fault</td>
<td>5</td>
<td>Off</td>
<td>Flashing amber</td>
</tr>
<tr>
<td>Media or hardware fault</td>
<td>6</td>
<td>Off</td>
<td>Flashing amber</td>
</tr>
<tr>
<td>Media fault</td>
<td>7</td>
<td>Off</td>
<td>Flashing amber</td>
</tr>
<tr>
<td>Interface fault</td>
<td>8</td>
<td>Off</td>
<td>Flashing amber</td>
</tr>
<tr>
<td>Degraded operation</td>
<td>A</td>
<td>Off</td>
<td>Flashing amber</td>
</tr>
<tr>
<td>Cartridge load or unload failure</td>
<td>Failure-dependent</td>
<td>Off</td>
<td>Flashing amber</td>
</tr>
<tr>
<td>Maintenance mode dump available</td>
<td>Blank</td>
<td>Flashing</td>
<td>Off</td>
</tr>
</tbody>
</table>
Using LTO Tape Cartridges

Loading a Tape Cartridge

To load an Ultrium tape cartridge into the LTO-4 Half-Height Tape Drive, gently insert the cartridge into the slot and then either:

- Push the cartridge further into the drive until the drive senses the cartridge and automatically completes the load operation.
- Use a library or host command to complete the load operation.

Unloading a Tape Cartridge

To unload an Ultrium tape cartridge from the LTO-4 Half-Height Tape Drive, either:

- Use a library or host command to unload the tape.
- Press the Eject button on the front panel of the drive.

Caution: After you press the Eject button, several minutes can elapse before the drive ejects the cartridge. Do not power down the tape drive or the host computer until the drive has completely ejected the cartridge.

Write Protecting a Tape Cartridge

Ultrium tape cartridges have a sliding write-protect switch at the right-rear corner as shown in figure 7.

<table>
<thead>
<tr>
<th>Sliding the write-protect switch toward the . . .</th>
<th>Enables data to be . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>center of the cartridge (the Locked position),</td>
<td>read from the cartridge, but not written to it. (This is the write-protected position.)</td>
</tr>
<tr>
<td>corner of the cartridge (the Unlocked position),</td>
<td>both read from and written to the cartridge. (This is the write-enabled position.)</td>
</tr>
</tbody>
</table>
Observe the following precautions to protect the data on your Ultrium tape cartridges:

Always:
- Remove the cartridge from the drive when not in use and store it in its protective case.
- Avoid dropping the cartridge. This can damage components inside the cartridge, possibly rendering the tape unusable. If you drop a tape cartridge, open the cartridge door and make sure that the leader pin is in the correct position.
- Re-tension a dropped cartridge before using.
- Keep the cartridge away from:
 - Direct sunlight and heat sources, such as radiators, heaters, or warm air ducts.
 - Sources of electromagnetic fields, such as telephones, computer monitors, dictation equipment, mechanical or printing calculators, motors, magnetic tools, and bulk erasers.
Cleaning the Tape Drive

Excessive tape debris or other material can accumulate on the tape heads if the drive is:

- Used with non-approved media
- Operated in a hot, dusty environment

When this happens, the drive can:

- Experience excessive errors while reading or writing
- Display the letter “C” on the seven-segment LED, illuminate the amber status LED continuously, and flash the LED dot during operation

This means that the drive needs to be cleaned.

The LTO cleaning cartridge has the same dimensions as the tape cartridge and contains an LTO Cartridge Memory (LTO-CM), but is loaded with
cleaning media instead of recording media. Always keep the LTO cleaning cartridge in its protective case when not in use.

Procedure

To clean the LTO-4 Half-Height Tape Drive:

1. Load an LTO cleaning cartridge into the tape drive.
2. Observe that the seven-segment LED displays the letter “C” and both the LED dot and the green status LED are flashing during the cleaning process.
3. After the cleaning process completes, depending on the drive configuration, either:
 - The drive automatically ejects the LTO cleaning cartridge, or
 - You must press the Eject button to eject the LTO cleaning cartridge.
4. Write the date on the cartridge label for future reference.

Each time you use the LTO cleaning cartridge, the cleaning media advances to a new, unused section. After approximately 50 cleanings, all of the media will be used up and the LTO-4 Half-Height Tape Drive:

- Displays the number “7” on the seven-segment LED
- Turns off the LED dot
- Flashes the amber status LED
- Ejects the LTO cleaning cartridge

Always discard used-up LTO cleaning cartridges.

Note: If the LTO-4 Half-Height Tape Drive does not recognize the cartridge as an LTO cleaning cartridge, the drive stops the cleaning process and ejects the cartridge.

Note: If the letter “C” and flashing amber status LED reappears continuously within 24 hours after a cleaning cycle, perform the cleaning procedure again. If, after three cleaning cycles in a 72-hour period, the condition persists, contact Quantum Technical Support.
Performing an Emergency Cartridge Eject

If the LTO-4 Half-Height Tape Drive stops communicating with the host computer, use the following procedure eject a cartridge (if necessary).

Caution: When you perform an emergency cartridge eject, any data in the drive or host buffers will not be written to the tape and the tape record may not be correctly terminated with an end-of-data mark. If the end-of-data mark is not written to the tape, you will not be able to append any data to that tape unless you overwrite the existing data on the tape.

To perform an emergency cartridge eject, hold down the Eject button between 5 to 15 seconds, and then release it. The tape drive firmware ignores all outstanding SCSI commands and ejects the tape.

If the emergency cartridge eject procedure does not eject the cartridge from the drive, see [Drive Does Not Eject the Tape Cartridge](#) on page 77.
This chapter describes operational theories used in the LTO-4 Half-Height Tape Drive.

The topics covered in this chapter are:

- Track Layout
- Recording Method on page 25
- Data Buffer on page 25
- Data Integrity on page 25
- Data Compression on page 27

Track Layout

With the LTO-4 Half-Height Tape Drive, there are 704 data tracks on the LTO tape, numbered 0 through 703. Data track 703 is the track closest to the bottom edge of the tape (the reference edge).

The area between adjacent servo bands is a data band. There are 4 data bands, each of which includes 176 data tracks. The data bands are numbered 2, 0, 1, 3. Data band 2 is closest to the bottom edge of the tape.
A track group is a set of tracks that is recorded concurrently. The sets of 11 data tracks in a data band are data sub-bands. There are 16 data sub-bands per data band. The data tracks are accessed in a serpentine manner.

A wrap is a track group recorded in the physical forward or physical reverse direction. The wraps are recorded in a serpentine fashion starting in data band 0. The tape contains 56 track groups, 28 written in the forward direction and 28 written in the reverse direction. Even-numbered wraps are recorded in the forward direction (BOT to EOT), and odd-numbered wraps are recorded in the reverse direction (EOT to BOT).

Figure 8 shows the layout of data on an LTO tape.

Figure 8 Layout of the Tracks on LTO Ultrium Tapes
Recording Method

The LTO-4 Half-Height Tape Drive records data using write-equalized (0,13/11) Run Length Limited (RLL) code. RLL (0,13/11) Data bits are defined as follows:

- **ONE** is represented by a flux transition at the center of a bit-cell.
- **ZERO** is represented by no flux transition in the bit-cell.

Data Buffer

In its default configuration, the LTO-4 Half-Height Tape Drive has a 128-Mbyte buffer. The buffer controller has a burst transfer rate of 320 Mbytes/sec., and utilizes bank switching to achieve a maximum average bandwidth of nearly 240 Mbytes/sec. The high bandwidth is needed to support look-aside data compression in the case of compressible data being transferred from the SCSI.

Data Integrity

The mechanical and electrical design of the drive ensures that drive performance does not degrade over time. Changes in head alignment, head wear, component drift, and other factors are minimized to ensure that data integrity and interchange capability are not compromised. The drive also incorporates adaptive Finite Impulse Response (FIR) filters that modify the equalization of each read channel dynamically to compensate for many of those changes.

The error rate of the LTO-4 Half-Height Tape Drive is less than 1 hard error in 10^{17} bits. The undetectable error rate is 1 in 10^{27} bits read.
The use of Cyclic Redundancy Checking (CRC), two-level orthogonal Error Correction Coding (ECC) provides a very low probability of encountering a hard error. During the read process, ECC correction is performed on the fly without affecting tape streaming.

There are two levels of Error Correction Coding (ECC). These two levels are orthogonal — that is, an ECC codeword at one level intersects ECC codewords at the other level just once, which means there will be only one common symbol between them. The two levels are called C1 and C2.

C1 ECC

As data is written to memory from the data processing unit, the DMA/ECC interface generates C1 ECC bytes and writes them to memory.

As data is written to tape, the C1 ECC is checked and an interrupt generated if there is an error. The C1 ECC read from memory is the ECC that is written to tape.

When data is read from tape and stored into memory, C1 ECC is checked and:

- If the C1 ECC is good, the “Valid” bit for the codeword pair is set.
- Otherwise, a pointer to the invalid codeword pair is passed to the C1 ECC correction engine.
 - If the C1 ECC correction engine can correct the error, then the corrected bytes are written to memory, and the Valid bit is set.
 - Otherwise, the Valid bit is left cleared.

As data is read from memory to the data processor for decompression, the C1 ECC is again checked and an interrupt generated if it is not correct.

C2 ECC

C2 ECC involves three distinct operations:

1. **Encoding**: Generating C2 ECC bytes from data bytes (performed by ECC coprocessor hardware).
2. **Decoding**: Generating ECC syndromes from data and ECC bytes, testing for all-zeroes (performed by ECC coprocessor hardware).
3 Correction: Generating corrected data from syndromes.

The correction depends on the number and types of errors involved:

- For one known C1 codeword pair in error in a subdata set (C2 codeword), the operation is performed by the ECC coprocessor hardware.
- For two or more known C1 codeword pairs in error, the matrix is computed by firmware and the correction is performed by hardware.
- For one or more unknown C1 codeword pairs, syndromes are generated by hardware, error location is computed by firmware, the matrix is computed by firmware and the correction is performed by hardware.

Servo-tracking Faults

During a write operation, if the servo system detects an error that may result in adjacent data tracks being overwritten, the write operation is aborted. The write operation will not continue until the correct servo tracking is re-established.

Data Compression

Typical data streams of text, graphics, software code, or other forms of data contain repeated information of some sort, whether it is at the text level where you can readily recognize regular repetitions of a single word, or at the binary level where the repetitions are in bits or bytes. Although most data is unique and random, the binary level data exhibits patterns of various sizes that repeat with varying degrees of regularity.

Storage efficiency is increased if the redundancies or repetition in the data are removed before the data is recorded to tape. Data compression technology significantly reduces or eliminates redundancies in data before recording the information to tape. This increases the amount of data that can be stored on a finite medium and increases the overall storage efficiency of the system.

With data compression, the redundant information in a data stream is identified and represented by codewords or symbols that allow the same
data to be recorded in a fewer number of bits. These codewords or symbols point back to the original data string, using fewer characters to represent the strings. Because these smaller symbols are substituted for the longer strings of data, more data can be stored in the same physical space.

Some important benefits result from data compression in tape drives:

• The same amount of information can be stored on a smaller length of tape.
• More data can be stored on a given length of tape.
• Performance can more closely parallel to that of high-transfer-rate computers.
• More information can be transferred in the same time interval.

In an effective data-compression method, several factors are important:

• The amount of compression, which is measured by the compression ratio. This ratio compares the amount of uncompressed data to the amount of compressed data. It is obtained by dividing the size of the uncompressed data by the size of the compressed data.
• The speed with which data is compressed and decompressed relative to the host transfer rate.
• The types of data to be compressed.
• The data integrity of the compressed data.

The amount of compression possible in a data stream depends on factors such as:

• Data pattern
• Compression algorithm
• Pattern repetition length
• Pattern repetition frequency
• Object size (block of information to be compressed)
• Starting pattern chosen
The transfer rate depends on factors such as:

- Compression ratio
- Drive buffer size
- Host computer input/output (I/O) speed
- Effective disc speeds of the host computer
- Record lengths that the host computer transmits

Data compression algorithms can be tailored to provide maximum compression for specific types of data. Because varying types of data are encountered in normal day-to-day operating circumstances, however, an effective data compression method for a tape drive must serve various data types. Additionally, the data compression method must adapt to different data types, automatically providing optimum handling for all types of data.

The compressed capacity of the tape is maximized through the use of intelligent data compression. The intelligent data compression hardware determines the compressibility of each record. If the size of the record is larger after a compression attempt than the native (uncompressed) size, then the record is written in its native form.

The intelligent data compression utilizes two compression schemes:

- Scheme-1 is a LZ1-based compression scheme using a history buffer to achieve data compression.
- Scheme-2 is a pass-through compression scheme designed to pass uncompressible data through with minimal expansion.

There are three specific requirements for compliance with the LTO specification.

- The output data stream must be decompressible following LTO rules to create the input sequence of records and file marks perfectly.
- An LTO compressed data stream may not contain any of the eight reserved control symbols.
- While control symbols allow switching to Scheme 2, this should never be used by operational software because this capability is only for diagnostic and testing purposes.
Software data compression should never be used because the built-in intelligent data compression of the LTO-4 Half-Height Tape Drive is much more efficient than software data compression.

The LTO-4 Half-Height Tape Drive uses a derivative of ALDC-2 lossless data compression that includes additional control codes for intelligent data compression.
Chapter 5
Specifications

This chapter provides technical specifications for the LTO-4 Half-Height Tape Drive.

The topics covered in this chapter are:

- Physical Specifications
- Power Specifications on page 34
- Drive Performance Specifications on page 35
- Environmental Requirements on page 37
- Injected Noise Specifications on page 38
- Reliability Specifications on page 38
- LTO Cartridge Specifications on page 39
Table 3 lists the physical specifications of the LTO-4 Half-Height Tape Drive, which is shown in figure 9.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Internal Drive</th>
<th>Tabletop Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Without Bezel</td>
<td>With Bezel</td>
</tr>
<tr>
<td>Height</td>
<td>1.63 inches (41.3 mm)</td>
<td>1.70 inches (43.1 mm)</td>
</tr>
<tr>
<td>Width</td>
<td>5.76 inches (146.30)</td>
<td>5.87 inches (149.10 mm)</td>
</tr>
<tr>
<td>Length</td>
<td>8.56 inches (217.50 mm) (Max. to end of connector)</td>
<td>8.76 inches (222.57 mm) (Max. to end of connector)</td>
</tr>
<tr>
<td>Weight</td>
<td>3.66 lbs. (1.66 kg)</td>
<td>3.72 lbs. (1.69 kg)</td>
</tr>
</tbody>
</table>
Figure 9 LTO-4 Half-Height Tape Drive Dimensions
The tabletop LTO-4 Half-Height Tape Drive has a built-in 90-260 VAC (47-63 Hz) automatic switching power supply.

Maximum voltage and power specifications for the internal LTO-4 Half-Height Tape Drive is listed in table 4. Specifications are the same as those for other SCSI drives unless otherwise noted.

<table>
<thead>
<tr>
<th>Specification</th>
<th>+12 VDC</th>
<th>+5 VDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Voltage Tolerance</td>
<td>12.00 ± 10%</td>
<td>5.00 ± 5%</td>
</tr>
<tr>
<td>Non-operating max voltage</td>
<td>14 Volts peak</td>
<td>7 Volts peak</td>
</tr>
<tr>
<td>Max operating current</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous:</td>
<td>0.8 amps RMS</td>
<td>4.1 amps max RMS*</td>
</tr>
<tr>
<td>Peak:</td>
<td>2.3 amps RMS</td>
<td>4.1 amps max RMS*</td>
</tr>
<tr>
<td>(1 sec max)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standby current (max)</td>
<td>0.45 amps RMS</td>
<td>1.50 amps RMS*</td>
</tr>
<tr>
<td>Ripple (peak-to-peak)</td>
<td>≤ 100 mV</td>
<td>≤ 100 mV</td>
</tr>
</tbody>
</table>

* RMS parameters measured at the power connector using a true RMS digital meter.

<table>
<thead>
<tr>
<th>Power Specification</th>
<th>Dissipation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Standby Power</td>
<td>12.5 watts RMS*</td>
</tr>
<tr>
<td>Max Continuous Operating Power</td>
<td>31 watts RMS*</td>
</tr>
</tbody>
</table>
Drive Performance Specifications

Table 6 lists the performance specifications of the LTO-4 Half-Height Tape Drive.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average data access time (650-m tape) from BOW (beginning of wrap)</td>
<td>60 seconds</td>
</tr>
<tr>
<td>Average rewind time (650-m tape)</td>
<td>≥ 51 seconds</td>
</tr>
<tr>
<td>Max rewind time (650-m tape)</td>
<td>≤ 120 seconds</td>
</tr>
<tr>
<td>Capacity LTO Ultrim 4 (680 m)</td>
<td>800 Gbytes (native)</td>
</tr>
<tr>
<td>Cartridge unload time</td>
<td>25 seconds</td>
</tr>
<tr>
<td>Error recovery</td>
<td>Read-after-write Reed Solomon ECC (2 levels)</td>
</tr>
<tr>
<td>Flux density</td>
<td>13250 cells per mm</td>
</tr>
</tbody>
</table>
Drive Performance Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head configuration</td>
<td>2 bumps 16 thin-film write heads per bump 16 MR read heads per bump 2 MR servo heads per bump</td>
</tr>
<tr>
<td>Maximum data access time (650-m tape) from BOW</td>
<td>120 seconds</td>
</tr>
<tr>
<td>Maximum rewind time (650-m tape)</td>
<td>≤ 115 seconds</td>
</tr>
<tr>
<td>Recording density</td>
<td>6,760 RLL-encoded ONEs per mm</td>
</tr>
<tr>
<td>Recording format</td>
<td>Ultrium 16-channel (U-416)</td>
</tr>
<tr>
<td>Recording method</td>
<td>0, 13/11 RLL</td>
</tr>
<tr>
<td>Recording undetectable errors</td>
<td>Less than 1 in (10^{27}) data bits</td>
</tr>
<tr>
<td>Recording unrecoverable errors</td>
<td>Less than 1 in (10^{17}) data bits</td>
</tr>
<tr>
<td>Synchronous transfer rate (burst)</td>
<td>160 Mbytes per sec max</td>
</tr>
<tr>
<td>Tape drive type</td>
<td>LTO (Ultrium)</td>
</tr>
<tr>
<td>Tape speed</td>
<td>Up to 6.07 meters per second</td>
</tr>
<tr>
<td>Track density</td>
<td>70 tracks per mm</td>
</tr>
<tr>
<td>Transfer rate (sustained)</td>
<td>120 Mbytes/second (max, native)</td>
</tr>
</tbody>
</table>
Table 7 lists the environmental specifications of the LTO-4 Half-Height Tape Drive.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Operational</th>
<th>Nonoperational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoustic level idling</td>
<td>52 dBA maximum 5.0 LwA Bels</td>
<td>—</td>
</tr>
<tr>
<td>(A-wt sum)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoustic level operational</td>
<td>57 dBA maximum 5.5 LwA Bels</td>
<td>—</td>
</tr>
<tr>
<td>(A-wt sum)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airflow requirements</td>
<td>Internal: 9 CFM (front to back)</td>
<td>N/A</td>
</tr>
<tr>
<td>Altitude</td>
<td>max 10,000 feet MSL (at 25°C)</td>
<td>40,000 feet (power off)</td>
</tr>
<tr>
<td>Humidity gradient</td>
<td>10% per hour</td>
<td>10% per hour</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>20% to 80% non-condensing</td>
<td>10% to 95% non-condensing</td>
</tr>
<tr>
<td>Shock (1/2 sine wave)</td>
<td>10 Gs peak, 11 msec</td>
<td>40 Gs peak, 11 msec</td>
</tr>
<tr>
<td>Temperature</td>
<td>+50° to +104°F (+10° to + 40°C)</td>
<td>−40° to +149°F (−40° to + 66°C)</td>
</tr>
<tr>
<td>Thermal gradient</td>
<td>11°C per hour (10-40°C)</td>
<td>11°C per hour (10-40°C)</td>
</tr>
<tr>
<td>Vibration (sweep test)</td>
<td>0.005 inches DA (5-43 Hz) 0.50 G peak (43-1000 Hz) sweep rate 5-1000Hz; 1.0 octave per minute</td>
<td>0.1 inches (5--15Hz) 1.0 G (15-500 Hz) 1.0 octave per minute</td>
</tr>
</tbody>
</table>
Injected Noise Specifications

The internal drive operates without degradation of error rates with 100 mV of noise injected between the chassis and 0 V at the power connector at any frequency between 45 Hz and 20 MHz.

Reliability Specifications

The LTO-4 Half-Height Tape Drive is designed for maximum reliability and data integrity. Table 8 lists the reliability specifications.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cartridge load/eject</td>
<td>100,000 cartridge load/eject cycles (no thread)</td>
</tr>
<tr>
<td>Error recovery and control</td>
<td>• Error correction code techniques (C1 and C2 ECC)</td>
</tr>
<tr>
<td></td>
<td>• Read-after-write (RAW)</td>
</tr>
<tr>
<td></td>
<td>• Error monitoring and reporting (error log)</td>
</tr>
<tr>
<td></td>
<td>• Retry on</td>
</tr>
<tr>
<td>Mean time between failures (MTBF)</td>
<td>300,000 hours MTBF at 100% duty cycle: power applied and tape moving continuously (tabletop drive; 50,000 hours at full load and 25°C)</td>
</tr>
<tr>
<td>Mean time to replace (MTTR)</td>
<td>Less than 30 minutes</td>
</tr>
<tr>
<td>Nonrecoverable error rate</td>
<td>Less than 1 in 10^{17} bits</td>
</tr>
</tbody>
</table>
The mean time between failures (MTBF) for the internal drive is specified at 300,000 hours minimum. This specification includes all power-on and operational time but excludes maintenance periods. Operational time is assumed to be 100% of the power-on time. Operational time is the time the tape is loaded.

The MTBF for the tabletop drive power supply is 50,000 hours with the unit operated at full load and 25°C.

Note: The MTBF rating does not represent any particular drive, but is derived from a large database of test samples. Actual rates may vary from unit to unit.

The mean time to replace (MTTR) is the average time required by a qualified service technician to diagnose a defective drive and to install a replacement drive. The MTTR for LTO products is less than 0.5 hour (30 minutes).

The Quantum LTO drives are field-replaceable units. If a problem occurs with a subassembly or component in the drive, you should replace the entire unit. Return the drive to the factory in its original packaging. Contact your distributor, dealer, your computer system company or your Quantum sales representative to arrange the return.

Table 9 lists the basic environmental tolerances for LTO Ultrium cartridges.
Table 9 Environmental Tolerances

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum localized temperature-permanent tape damage</td>
<td>Greater than 52°C</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>10°C to 40°C</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>10% to 80% storage, 20% to 80% operating</td>
</tr>
<tr>
<td>Wet bulb temperature</td>
<td>26°C max</td>
</tr>
</tbody>
</table>

If during storage and/or transportation a cartridge has been exposed to conditions outside the specified values, it must be conditioned before use in the operating environment. The conditioning shall be exposure to the operating environment for a time equal to, or greater than, the time away from the operating environment, up to a maximum of 24 hours. There shall be no deposit of moisture anywhere on or in the cartridge.

The stray magnetic field at any point on the tape shall not exceed 4000 A/m.

Each Ultrium 1, 2, and 3 cartridge has 4 Kbytes of nonvolatile memory:
- 3 Kbytes are used to store tape-directory and hardware specific information.
- 1 Kbyte is available for application and OEM use.

Each Ultrium 4 cartridge has 8 Kbytes of nonvolatile memory:
- To store tape-directory and hardware specific information.
- For application and OEM use.

The cartridge memory is powered, read, and written to via a radio-frequency link.

After 5,000 load/eject cycles, replace the cartridge to insure data integrity.
This chapter provides best-practice installation guidelines for getting the most out of your LTO-4 Half-Height Tape Drive and troubleshooting information you can use to identify and resolve tape drive problems.

Topics covered in this chapter are:

- Installation Best Practices
- Troubleshooting Suggestions on page 42

Installation Best Practices

Following SCSI Best Practices

Always follow SCSI best practices when installing an LTO-4 Half-Height Tape Drive to ensure trouble-free installation and operation.

Using a Serial-attached SCSI Host Bus Adapter

To achieve the very best performance from your LTO-4 Half-Height Tape Drive and optimize your backup operations, always attach the drive to a serial-attached SCSI controller that supports 3 GBytes per sec. per port transfer rate.
Before installing the HBA, check and record your current system configuration. For example:

<table>
<thead>
<tr>
<th>In the . . . operating system,</th>
<th>You can find information on any currently installed SCSI HBA by . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows 2000</td>
<td>1 Double-clicking Administrative Tools in the Control Panel</td>
</tr>
<tr>
<td></td>
<td>2 Clicking Computer Management > Device Manager</td>
</tr>
<tr>
<td></td>
<td>3 Clicking the SCSI host adapters listed</td>
</tr>
<tr>
<td></td>
<td>4 Clicking Properties to view the Resources tab</td>
</tr>
<tr>
<td>UNIX/Linux</td>
<td>Viewing the boot log text file.</td>
</tr>
</tbody>
</table>

Refer to your operating system documentation for specific information on reviewing your system configuration.

After installing the SCSI HBA, restart the system. Then, ensure that the operating system recognizes the HBA and that there are no conflicts with other adapters.

Troubleshooting Suggestions

Computer Does Not Start

If the computer started and operated properly before installing a SCSI HBA and the LTO-4 Half-Height Tape Drive, but does not start now:

1. Remove the SCSI HBA.
2 Restart the system.

<table>
<thead>
<tr>
<th>IF the system . . .</th>
<th>THEN . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>starts normally,</td>
<td>there is a problem with the SCSI HBA.</td>
</tr>
<tr>
<td></td>
<td>1 Make sure that the SCSI HBA:</td>
</tr>
<tr>
<td></td>
<td>• Is compatible with system</td>
</tr>
<tr>
<td></td>
<td>• Does not have burnt components</td>
</tr>
<tr>
<td></td>
<td>Reinstall the SCSI HBA in a different PCI slot and restart the computer.</td>
</tr>
<tr>
<td>still does not start,</td>
<td>contact Technical Support.</td>
</tr>
</tbody>
</table>

If the computer starts normally but does not recognize the tape drive:

1 Restart the system and check whether the SCSI controller is recognized at system startup. You should see messages similar to:

SCSI Adapter Manufacturer SCSI BOIS xxxxxxx
CHA: SCSI ID #, SCSI Device Name
SCSI ID #, SCSI Device Name"

<table>
<thead>
<tr>
<th>IF the SCSI controller is . . . during system startup,</th>
<th>THEN . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>recognized</td>
<td>proceed to step 2 to determine whether the tape drive is recognized when the SCSI controller scans for devices.</td>
</tr>
<tr>
<td>not recognized</td>
<td>contact Technical Support.</td>
</tr>
</tbody>
</table>

2 If the SCSI controller is recognized during system startup, restart the system to determine whether the tape drive is recognized when the SCSI controller scans for devices. You should see messages similar to:

<table>
<thead>
<tr>
<th>Bus</th>
<th>Target</th>
<th>Lun</th>
<th>Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Quantum ULTRIUM 4</td>
</tr>
<tr>
<td>IF the tape drive is . . . during system startup,</td>
<td>THEN . . .</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>recognized</td>
<td>the problem has been resolved.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>not recognized</td>
<td>proceed to step 3 to determine whether the tape drive is receiving power.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3 If the tape drive is not recognized when the SCSI controller scans for devices, check the green status LED on the LTO-4 Half-Height Tape Drive front panel to make sure the drive is receiving power.

<table>
<thead>
<tr>
<th>IF the green status LED is . . .</th>
<th>THEN . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>off,</td>
<td>proceed to step 4 to check the power connections to the tape drive.</td>
</tr>
<tr>
<td>on,</td>
<td>proceed to step 5 to determine whether the drive passed the Power On Self Test functions.</td>
</tr>
</tbody>
</table>

4 If the green status LED is off, check the power connections to the tape drive.

For the internal tape drive:

- a Shut down the system, remove the cover, and re-seat the DC power cable connector on tape drive.
- b Restart the system and check the green status LED.
<table>
<thead>
<tr>
<th>IF the green status LED is . . .</th>
<th>THEN . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>off,</td>
<td>shut down the system, replace the power connector attached to the tape drive with one from a known working device such as a CD-ROM, and restart the system.</td>
</tr>
<tr>
<td></td>
<td>If the green status LED:</td>
</tr>
<tr>
<td></td>
<td>• Comes on, then resolve the problem with the DC power cable/connector.</td>
</tr>
<tr>
<td></td>
<td>• Remains off, then contact Technical Support to resolve the possible problem with the tape drive.</td>
</tr>
<tr>
<td>on,</td>
<td>repeat step 2 of this procedure to confirm that re-seating the DC power cable to the tape drive solved the problem and the tape drive is recognized during system startup.</td>
</tr>
<tr>
<td></td>
<td>If the tape drive is:</td>
</tr>
<tr>
<td></td>
<td>• Recognized during the SCSI controller scan, then the problem is resolved. Reinstall the computer cover.</td>
</tr>
<tr>
<td></td>
<td>• Still not recognized, then proceed to step 5 to determine whether the drive passed the Power On Self Test functions.</td>
</tr>
</tbody>
</table>
For the tabletop tape drive:

a Set the drive AC power switch to the off position and re-seat the AC power cord connector.

b Set the drive AC power switch to the on position and check the green status LED.

<table>
<thead>
<tr>
<th>IF the green status LED is . . .</th>
<th>THEN . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>off,</td>
<td>set the drive AC power switch to the off position, replace the AC power cable with one from a known working device, and reset the AC power switch to the on position.</td>
</tr>
<tr>
<td></td>
<td>If the green status LED:</td>
</tr>
<tr>
<td></td>
<td>• Comes on, then resolve the problem with the AC power cable/connector.</td>
</tr>
<tr>
<td></td>
<td>• Remains off, then contact Technical Support to resolve the possible problem with the tape drive.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>on,</th>
<th>repeat step 2 of this procedure to confirm that re-seating or replacing the AC power cable solved the problem and the tape drive is recognized during system startup.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>If the tape drive is:</td>
</tr>
<tr>
<td></td>
<td>• Recognized during the SCSI controller scan, then the problem is resolved.</td>
</tr>
<tr>
<td></td>
<td>• Still not recognized, then proceed to step 5 to determine whether the drive passed the Power On Self Test functions.</td>
</tr>
</tbody>
</table>
5 If the green status LED is on, but the tape drive is not recognized during the SCSI controller scan, use the front panel LEDs to determine whether the drive passes the Power on Self Test (POST) functions. (See table 2 on page 16.)

<table>
<thead>
<tr>
<th>IF the LEDs show that the tape drive ... the POST functions,</th>
<th>THEN ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>fails</td>
<td>contact Technical Support to resolve the possible problem with the tape drive.</td>
</tr>
<tr>
<td>passes</td>
<td>proceed to step 6 to check for possible SCSI problems.</td>
</tr>
</tbody>
</table>

6 If the front panel LEDs indicate that the drive has passed the POST functions, check the SCSI bus connections.

For the internal tape drive:

a Shut down the system.

b Verify that there are no SCSI ID conflicts between the tape drive and other SCSI devices.

c Check the SCSI cable for bent pins.

d If possible, replace the SCSI cable with one from another SCSI controller bus chain.

e If checks a through d do not reveal a problem, contact Technical Support to resolve the possible problem with the tape drive.

For the tabletop tape drive:

a Shut down the system and cycle the tape drive AC power switch through its Off/On positions.

b Verify that there is no SCSI ID conflict between the tape drive and other SCSI devices.

c Check the SCSI cable for bent pins.

d If possible, replace the SCSI cable with one from another SCSI controller bus chain.

e If checks a through d do not reveal a problem, contact Technical Support to resolve the possible problem with the tape drive.
Depending on your operating system environment, refer to the following subsections for troubleshooting guidelines if the LTO-4 Half-Height Tape drive is recognized by the system hardware at startup, but not by the operating system or applications.

Windows Operating System Environments

When a tape drive is installed in a Windows operating system environment, Windows displays a message on the screen if it does not have a driver in place for the tape drive.

<table>
<thead>
<tr>
<th>IF the tape drive is for use in . . .</th>
<th>THEN you . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>an ISV application,</td>
<td>can click the Cancel button to clear the message.</td>
</tr>
<tr>
<td></td>
<td>When the ISV backup software application is running, the application invokes its own drivers to run the tape drive.</td>
</tr>
<tr>
<td>a native Windows operating system backup utility,</td>
<td>must install the proper driver for the tape drive.</td>
</tr>
</tbody>
</table>

Red Hat Linux Operating System Environments

The tape driver for Red Hat Linux, called `st`, is included as part of the Red Hat Linux operating system.

When Red Hat Linux starts, the operating system recognizes the tape drive and automatically configures it as a device in the `/dev` directory. If it is the first tape device in the `/dev` directory, the tape drive is known as:

`/dev/st0` or `/dev/nst0`.
There are various ways to view the log files to see whether Linux recognizes the tape drive:

- One method is to open a terminal window and issue the following command from the root directory:

  ```bash
dmesg | grep SCSI
  ```

 This command produces an output similar to:

 `(scsi0)<Adaptec AHA-294XX Ultra2 SCSI host adapter> found at PCI 0/16/0`

- Another method might be to use the command:

  ```bash
cat /proc/scsi/scsi
  ```

 This command produces an output similar to:

 Host: scsi0 Channel: 0 Id:6 Lun:0
 Vendor: Quantum Model: ULTRIUM 3 Rev: 1897
 Type: Sequential-Access ANSI SCSI revision 04

- You can also use a text editor to view the messages in the file `/var/log/` and look for tape drive entries.

- Sometimes a system can have multiple tape device names in the `/dev` directory and will not know which `st` number to use. To view the `st` device number for your attached tape drive, use the command:

  ```bash
dmesg | grep tape
  ```

 This command produces an output similar to:

 Detected SCSI tape st0 and scsi0 . . .
If you cannot load a tape cartridge into the LTO-4 Half-Height Tape Drive:

1. Verify that the tape drive green status LED is on and that all other LEDs are off.

<table>
<thead>
<tr>
<th>IF the green status LED is . . .</th>
<th>AND other LEDs are . . .</th>
<th>THEN . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>off,</td>
<td>off,</td>
<td>refer to the procedures for troubleshooting power problems under Computer Hardware Does Not Recognize the Tape Drive on page 43 to determine why the green status LED is not on.</td>
</tr>
<tr>
<td>on,</td>
<td>on or flashing,</td>
<td>see table on page 15 to determine whether the other LED activity is normal or abnormal. Then proceed to step 2 of this procedure.</td>
</tr>
<tr>
<td>on,</td>
<td>off,</td>
<td>skip to step 3 of this procedure.</td>
</tr>
</tbody>
</table>

If the amber status LED is flashing and the seven-segment LED displays the number “4” or “5” to indicate a possible Power On Self Test error, contact Technical Support to resolve the possible problem with the tape drive.
2 If other LEDs are on, reset the tape drive by either:
 • Pressing and holding the cartridge eject button on the front panel for more than 5 seconds and releasing it (both internal and tabletop drives),
 • Or by cycling the drive AC power switch off and on (tabletop tape drive only).

3 Verify that the tape drive passes the Power On Self Test by viewing LED activity. All LEDs should be off for approximately 20 to 30 seconds after the tape drive resets.

 If the amber status LED is flashing and the seven-segment LED displays the number “4” or “5” to indicate a possible Power On Self Test error, contact Technical Support to resolve the possible problem with the tape drive.

4 If the green status LED is on, all the other LEDs are off, and you still cannot load a tape cartridge into the tape drive, examine the tape and the inside of the tape drive.
 • Verify that:
 • There are no tape labels interfering with tape insertion.
 • Tape labels are only on proper tape surfaces, and that labels are flat and not curled.
 • The tape drive opening is free of debris and tape labels.
 • The tape pin and tape are fully within the cartridge.
 • If you are inserting a cleaning cartridge, verify that the cleaning tape:
 • Is valid. The tape drive ejects unsupported cleaning tapes.
 • Has not expired. See table 2 on page 16 for Expired cleaning cartridge detected.

5 Attempt to insert a different tape cartridge.

6 If a tape still cannot be inserted into the tape drive, contact Technical Support to resolve the possible problem with the tape drive.
If you cannot eject a tape cartridge from the LTO-4 Half-Height Tape Drive:

1 Verify that the green status LED is on and that all other LEDs are off.

<table>
<thead>
<tr>
<th>IF the green status LED is . . .</th>
<th>AND other LEDs are . . .</th>
<th>THEN . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>off,</td>
<td>off,</td>
<td>refer to the procedures for troubleshooting power problems under Computer Hardware Does Not Recognize the Tape Drive on page 43 to determine why the green status LED is not on.</td>
</tr>
<tr>
<td>on, on or flashing,</td>
<td></td>
<td>see table 2 on page 16 to determine whether the other LED activity is normal or abnormal. Then proceed to step 2 of this procedure. If the amber status LED is flashing and the seven-segment LED displays the number “4” or “5” to indicate a possible Power On Self Test error, contact Technical Support to resolve the possible problem with the tape drive.</td>
</tr>
<tr>
<td>on, off,</td>
<td></td>
<td>skip to step 3 of this procedure.</td>
</tr>
</tbody>
</table>
2 If other LEDs are on, reset the tape drive by either:
 - Pressing and holding the cartridge eject button on the front panel for more than 5 seconds and releasing it (both internal and tabletop drives)
 - Cycling the drive AC power switch off and on (tabletop tape drive only)

3 With the green status LED on and all other LEDs off, press the cartridge eject button on the front panel.

<table>
<thead>
<tr>
<th>IF . . .</th>
<th>THEN . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>the green status LED flashes, with no other LED indicators on,</td>
<td>wait for the tape to eject (normally takes from 2 to 3 minutes).</td>
</tr>
<tr>
<td>you see a message similar to: You cannot eject the cartridge because the tape drive is in use. Wait until the operation is complete before ejecting the cartridge. The backup software may still have the tape drive in prevent mode so that the cartridge cannot be ejected. Use the backup software commands to eject the tape.</td>
<td>use the <code>mt offline</code> command to eject the tape.</td>
</tr>
</tbody>
</table>

Note: In UNIX/Linux environments, the message may not appear, even though the operating system prevents the drive from ejecting the tape. Use the `mt offline` command anyway.
Slow Backup Operations

Many factors can make backups appear to be slow. To achieve the highest possible transfer rate, the LTO-4 Half-Height Tape Drive:

- MUST be attached to a SCSI controller capable of a minimum of 80 Mbytes per sec., and
- MUST NOT share the same SCSI bus as another active SCSI device such as hard drives.

1. Verify that the tape drive is attached to a SCSI controller. You can do this by:
 - Watching the system the startup process
 - Examining the system startup log files

<table>
<thead>
<tr>
<th>IF the tape drive is . . . to a SCSI controller,</th>
<th>THEN . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>attached</td>
<td>proceed to step 2 of this procedure to determine whether the tape drive shares the SCSI bus with another active SCSI device.</td>
</tr>
<tr>
<td>not attached</td>
<td>attach the tape drive to a SCSI controller to achieve the best possible hardware performance for the best possible transfer rate.</td>
</tr>
</tbody>
</table>
2 If the tape drive is attached to a SCSI controller, verify that it does not share the SCSI bus with another active SCSI device by:

- Checking:
 - Windows Device Manager
 - Unix/Linux logs
- Monitoring the SCSI controller activity during system startup.

<table>
<thead>
<tr>
<th>IF the tape drive . . .</th>
<th>THEN . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>shares the SCSI bus with other SCSI devices that are active when tape backups are performed,</td>
<td>reconfigure the SCSI setup to make the tape drive the only active device on the SCSI bus.</td>
</tr>
<tr>
<td>is the only active device on the SCSI bus</td>
<td>proceed to step 3 of this procedure to determine whether the method of performing tape backups is a factor.</td>
</tr>
</tbody>
</table>

3 The method of performing tape backups can be a factor in slow backup operations. Data sent to the tape drive over a network connection and delays in data transfer over a network connection can cause backups to slow down.

To determine whether the method of performing tape backups is a factor:

a Use the tape diagnostic software to perform a write/read test.

Caution: The read/write test will overwrite any data on the tape. Always use a new/blank or “scratch” cartridge for diagnostic read/write tests.

The diagnostic write/read test evaluates the connection between the tape drive and the SCSI controller and removes the network data transfer and the backup software from the performance evaluation.
When the test finishes, determine the megabytes per second data transfer rate to verify that the tape drive is performing at an acceptable rate.

<table>
<thead>
<tr>
<th>IF you believe that the read/write transfer rate is . . .</th>
<th>THEN . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>too slow,</td>
<td>use the tape diagnostic software to perform a trace buffer retrieval.</td>
</tr>
<tr>
<td></td>
<td>Send the diagnostic output file to Technical Support for evaluation of the SCSI bus condition.</td>
</tr>
<tr>
<td>acceptable, but backups still seem to be slow,</td>
<td>it might be attributed to the number of files and the average size of the backup files.</td>
</tr>
<tr>
<td></td>
<td>These factors can have a significant effect on the backup performance.</td>
</tr>
<tr>
<td></td>
<td>Backups where the average file size is less than 200 Kbytes, for example, are slower than backups where the average file size is greater than 200 Kbytes.</td>
</tr>
<tr>
<td></td>
<td>Obtain backup log files to determine number of files and average file size.</td>
</tr>
</tbody>
</table>

The LTO-4 Half-Height Tape Drive supports the TapeAlert standard, and issues the appropriate alert messages in response to operational error conditions. You can view TapeAlert messages either directly, on the system screen, or in the log file of your backup application. Note, however, that some operational error conditions can cause more than one TapeAlert message.
The following subsections provide troubleshooting guidelines for dealing with the most common TapeAlert error conditions.

Backup Failure TapeAlert Messages

A number of problems can cause a backup operation to fail.

<table>
<thead>
<tr>
<th>This TapeAlert message . . .</th>
<th>Signifies . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>The operation has stopped because an error has occurred while reading or writing data which the drive cannot correct.</td>
<td>that a media error occurred during a read or write operation. Proceed to step 1 of the following procedure.</td>
</tr>
<tr>
<td>The tape is from a faulty batch or the tape drive is faulty. or: The tape is damaged or the drive is faulty. Call the tape drive supplier helpline.</td>
<td>that a media error occurred during a read or write operation. These messages frequently appear in addition to the “The operation has stopped because...” message. In this case, proceed to step 1 of the following procedure. Otherwise, repeat the backup operation with a known good tape and proceed to step 1 of the following procedure if the problem persists.</td>
</tr>
</tbody>
</table>

1. Retry the backup operation if you make any changes are made to the SCSI cabling, or if you unplug and reconnect any SCSI cables.

2. If the problem persists, remove the data tape, insert a cleaning cartridge to clean the tape drive (see Cleaning the Tape Drive on page 20).

3. After the tape drive ejects the cleaning cartridge, reload the data tape and retry the backup operation.
4 If the problem persists, use the tape diagnostic software to perform a write/read test with 4 Gbytes of data.

Caution: The write/read test will overwrite any data on the tape. Always use a new/blank or “scratch” cartridge for diagnostic write/read tests.

<table>
<thead>
<tr>
<th>IF the diagnostic test...</th>
<th>THEN...</th>
</tr>
</thead>
<tbody>
<tr>
<td>completes normally,</td>
<td>retry the backup operation using the same new/blank or “scratch” tape that you used for the diagnostic write/read test. If the backup retry:</td>
</tr>
<tr>
<td></td>
<td>• Succeeds, discard the original data tape. The problem is resolved.</td>
</tr>
<tr>
<td></td>
<td>• Fails, repeat steps 3 and 4 of this procedure to clean the tape drive a second time and proceed to step 6.</td>
</tr>
<tr>
<td>fails,</td>
<td>repeat steps 3 and 4 of this procedure to clean the tape drive a second time and proceed to step 6.</td>
</tr>
</tbody>
</table>

5 Retry the backup operation. If the backup retry:

• Succeeds, the problem is resolved.

• Fails, contact Technical Support to resolve the possible problem with the tape drive.
Write-Protected TapeAlert Messages

Write-protected TapeAlert messages can appear in response to:

- Actual write-protected tape cartridges
- Defective tape cartridges
- Cartridges of a type that appear to be write protected

<table>
<thead>
<tr>
<th>This TapeAlert message . . .</th>
<th>Signifies . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>You are trying to write to a write-protected cartridge. Remove the write-protection or use another tape.</td>
<td>that you are trying to write to a tape cartridge that is actually write protected.</td>
</tr>
<tr>
<td>1 Eject the tape cartridge from the drive.</td>
<td></td>
</tr>
<tr>
<td>2 Set the cartridge write-protect switch to the unlocked (read-enabled) position (see figure 7 on page 19).</td>
<td></td>
</tr>
<tr>
<td>3 Retry the backup operation.</td>
<td></td>
</tr>
<tr>
<td>The memory in the tape cartridge has failed, which reduces performance. Do not use the cartridge for further backup operations. and/or: You have loaded a cartridge of a type that is read-only in this drive. The cartridge will appear as write-protected.</td>
<td>you are trying to write to a tape cartridge that is either defective (failed Cartridge Memory chip), or the wrong type.</td>
</tr>
<tr>
<td>Retry the backup operation using a known good cartridge of the proper type. If the problem persists, contact Technical Support to resolve the possible problem with the tape drive.</td>
<td></td>
</tr>
<tr>
<td>Overwrite protection is set to <setting>. Click OK to overwrite the media or insert new media that can be overwritten.</td>
<td>a software-related problem.</td>
</tr>
<tr>
<td>Refer to the documentation for your backup software for information on the overwrite and append settings.</td>
<td></td>
</tr>
</tbody>
</table>
Hardware Failure TapeAlert Messages

Hardware failure TapeAlert messages are descriptive and straightforward.

<table>
<thead>
<tr>
<th>This TapeAlert message . . .</th>
<th>Signifies . . .</th>
</tr>
</thead>
</table>
| The tape drive has a hardware fault:
 1. Eject the tape or magazine.
 2. Reset the drive.
 3. Restart the operation.
 Or:
 The tape drive has a hardware fault:
 1. Turn the tape drive off and then on again.
 2. Restart the operation.
 3. If the problem persists, call the tape drive supplier helpline. | a tape drive hardware failure. |

1 Press the cartridge eject button on the front panel to eject the tape cartridge.

2 Cycle the tape drive power to the off then on position:

 For the internal LTO-4 Half-Height Tape Drive:

 a Terminate all running applications.

 b Shut down the workstation or server system.

 c Restart the system.

 For the tabletop LTO-4 Half-Height Tape Drive, use the AC power on/off switch on the back panel to cycle the drive power to the off then on position.
3. Check the tape drive front panel LED indicators to determine the operational condition of the drive (see Table 2 on page 16).

<table>
<thead>
<tr>
<th>This LED indication . . .</th>
<th>Signifies . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Green status LED on steady and:</td>
<td>the normal operational configuration. The problem is resolved.</td>
</tr>
<tr>
<td>• All others off</td>
<td></td>
</tr>
<tr>
<td>• Amber status LED flashing</td>
<td>a hardware failure condition. Contact Technical Support to resolve the possible problem with the tape drive.</td>
</tr>
<tr>
<td>• Amber status LED flashing and:</td>
<td></td>
</tr>
<tr>
<td>• Seven-segment LED displaying a number</td>
<td>a failed Power On Self Test function. Contact Technical Support to resolve the possible problem with the tape drive.</td>
</tr>
</tbody>
</table>

Tape Cleaning TapeAlert Messages

Tape cleaning TapeAlert messages indicate problems when you insert a cleaning cartridge into the LTO-4 Half-Height Tape Drive. Like hardware failure TapeAlert messages, tape cleaning TapeAlert messages are descriptive and straightforward.

<table>
<thead>
<tr>
<th>This TapeAlert message . . .</th>
<th>Signifies . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>The last cleaning cartridge used in the tape drive has worn out:</td>
<td>that the cleaning cartridge is used up. Discard it.</td>
</tr>
<tr>
<td>1. Discard the worn out cleaning cartridge.</td>
<td>See Cleaning the Tape Drive on page 20 and use a new or still functional LTO cleaning cartridge to clean the tape drive.</td>
</tr>
<tr>
<td>2. Wait for the current operation to finish.</td>
<td></td>
</tr>
<tr>
<td>3. Then use a new cleaning cartridge.</td>
<td></td>
</tr>
<tr>
<td>This TapeAlert message . . .</td>
<td>Signifies . . .</td>
</tr>
<tr>
<td>----------------------------</td>
<td>----------------</td>
</tr>
</tbody>
</table>
| The last cleaning cartridge used in the tape drive was an invalid type:
 1. Do not use this cleaning cartridge in this drive.
 2. Wait for the current operation to finish.
 3. Then use a valid cleaning cartridge. | the tape drive does not recognize the cleaning tape as being of a valid type.
See [Cleaning the Tape Drive](#) on page 20 and use a valid LTO-type cleaning cartridge to clean the tape drive. |
| The tape drive needs cleaning:
 1. If the operation has stopped, eject the tape and clean the drive.
 2. If the operation has not stopped, wait for it to finish and then clean the drive.
 3. Check the tape drive users manual for device specific cleaning instructions. | the tape drive has issued a message to the backup software to instruct you to clean the tape drive.
See [Cleaning the Tape Drive](#) on page 20. |
Use the following quick-start checklists to get your tape drive up and running as quickly as possible:

- Internal LTO-4 Half-Height Tape Drive Quick Start
- Tabletop LTO-4 Half-Height Tape Drive Quick Start
Internal LTO-4 Half-Height Tape Drive Quick Start

Use the following quick-start procedure to install the internal LTO-4 Half-Height Tape Drive. Print this page and check each step as you complete it. If you need more information about a step, see the section referenced in the step.

1. Unpack the contents of your drive package, and check for damaged items.
 See Unpacking and Inspecting the Drive on page 7.

2. Turn off your computer, remove its covers and power cable, and select a mounting bay for the drive.
 See Mounting the Internal Tape Drive on page 9.

3. Connect a serial-attached SCSI (SAS) interface cable to the drive.
 See Connecting the Internal Drive Interface and DC Power Cables on page 10.

4. Connect a serial cable, if installing the tape drive in a tape library system.
 See Connecting the Internal Drive Interface and DC Power Cables on page 10.

5. Connect a DC power cable to the drive.
 See Connecting the Internal Drive Interface and DC Power Cables on page 10.

6. Replace the computer covers and AC power cable, turn on the computer, and verify that the internal tape drive is operating properly.

7. Register your tape drive.
 See Registering the LTO-4 Half-Height Tape Drive on page 14.
Tabletop LTO-4 Half-Height Tape Drive Quick Start

Use the following quick-start procedure to install tabletop LTO-4 Half-Height Tape Drive. Print this page and check each step as you complete it. If you need more information about a step, see the subsection referenced in the step.

<table>
<thead>
<tr>
<th></th>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unpack the contents of your drive package, and check for damaged items.</td>
<td>See Unpacking and Inspecting the Drive on page 7.</td>
</tr>
<tr>
<td>2</td>
<td>Connect a serial-attached SCSI (SAS) interface cable to the drive.</td>
<td>See Connecting the Internal Drive Interface and DC Power Cables on page 10.</td>
</tr>
<tr>
<td>3</td>
<td>Connect a power cable to the drive.</td>
<td>See Connecting the Tabletop Drive Interface and AC Power Cables on page 12.</td>
</tr>
</tbody>
</table>
| 4 | • Turn on the computer
• Turn on the tabletop tape drive
• Verify that the tabletop tape drive is operating properly. | |
| 5 | Register your tape drive. | [Registering the LTO-4 Half-Height Tape Drive](#) on page 14. |
Disposal of Electrical & Electronic Equipment

This symbol on the LTO-4 Half-Height Tape Drive or on its packaging indicates that the tape drive should not be disposed of with your other waste materials. Instead, it should be submitted to a designated collection point for the recycling of electrical and electronic equipment. The separate collection and recycling of your waste equipment at the time of disposal helps conserve natural resources and ensures that the equipment is recycled in a manner that protects human health and the environment.

For more information about properly disposing of your waste equipment for recycling, please visit our website at qcare.quantum.com or contact your local government authority, your household waste disposal service, or the business from which you purchased the product.
Appendix C

Regulatory Compliances

This appendix identifies the LTO-4 Half-Height Tape Drive regulatory compliances. The topics include:

- Safety Compliances
- Electromagnetic Compatibility (EMC) Compliances on page 69
Safety Compliances

The LTO-4 Half-Height Tape Drives are safety compliant with the following regulatory codes in the countries indicated:

<table>
<thead>
<tr>
<th>Country</th>
<th>Regulatory Organization</th>
<th>Compliant to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>Canadian Standards Association (CSA)</td>
<td>UL/CSA 60950-1</td>
</tr>
<tr>
<td>EU member nations</td>
<td>Comité Européen de Normalisation Electrotechnique – the European Committee for Electrotechnical Standardization (CENELEC)</td>
<td>EN 60950-1, 1st edition</td>
</tr>
<tr>
<td>IECEE member nations*</td>
<td>International Electrotechnical Commission on Electrical Equipment (IECEE) for Mutual Recognition of Test Certificates for Electrical Equipment “CB Scheme”</td>
<td>CB Scheme per IEC 60950-1 with details and exceptions for each member country</td>
</tr>
<tr>
<td>Israel</td>
<td>SII</td>
<td>CB Scheme</td>
</tr>
<tr>
<td>Taiwan</td>
<td>BSMI</td>
<td>BSMI certification, CNS 14336</td>
</tr>
<tr>
<td>United States</td>
<td>Underwriters Laboratories (UL)</td>
<td>UL/CSA 60950-1</td>
</tr>
</tbody>
</table>

* IECEE member nations include: Argentina, Austria, Australia, Belgium, Brazil, Canada, China (PR), Czech Republic, Denmark, Finland, France, Germany, Hungary, India, Ireland, Israel, Italy, Japan, (South) Korea, Montenegro, Netherlands, Norway, Poland, Russian Federation, Serbia, Singapore, Slovakia, Slovenia, South Africa, Spain, Switzerland, Turkey, United Kingdom, and USA.
The LTO-4 Half-Height Tape Drives are EMC compliant with the following regulatory organizations and codes in the countries indicated:

<table>
<thead>
<tr>
<th>Country</th>
<th>Regulatory Organization</th>
<th>Compliant to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>Australian Communications and Media Authority (ACMA)</td>
<td>AS/NZS 3548 (same as CISPR 22)</td>
</tr>
<tr>
<td>Canada</td>
<td>Industry Canada Digital Apparatus - Interference-Causing Equipment Standard (ICES-003)</td>
<td>ICES-003 Digital Apparatus</td>
</tr>
<tr>
<td>EU member nations</td>
<td>CE</td>
<td>Emissions per CISPR 22, EN55022 and Immunity per CISPR 24, EN55024</td>
</tr>
<tr>
<td>Israel</td>
<td>SII</td>
<td>CISPR 22 and CISPR 24</td>
</tr>
<tr>
<td>Japan</td>
<td>Voluntary Control Council for Interface (VCCI)</td>
<td>VCCI</td>
</tr>
<tr>
<td>New Zealand</td>
<td>Australian Communications and Media Authority (ACMA)</td>
<td>AS/NZS 3548 (same as CISPR 22)</td>
</tr>
<tr>
<td>South Korea</td>
<td>MIC</td>
<td>CISPR 22 and CISPR 24</td>
</tr>
<tr>
<td>Taiwan</td>
<td>Bureau of Commodity Inspection and Quarantine (BSMI)</td>
<td>BSMI EMC certification, CNS 14338</td>
</tr>
</tbody>
</table>
Also consider the following safety points:

- Install the drive in an enclosure that limits the user’s access to live parts, gives adequate system stability and provides the necessary grounding for the drive.

- Provide the correct voltages (+5 VDC and +12 VDC) based on the regulation applied—Extra Low Voltage (SEC) for UL and CSA, and Safety Extra Low Voltage for BSI and VDE (if applicable).
B
backup/restore problems 56
best practices 41

C
cartridge memory, description 3
cartridges
care and maintenance 19
ejecting 18
loading 18
specifications 39
troubleshooting 50
unloading 18
write-protecting 18
cautions, internal drives 6
chassis, description 3

data buffering, description 3
data compression
 considerations 28
description 3
 intelligent 29
data integrity 25
 error-correction code 26
 servo-tracking faults 27
data transfer rate
description 3
 variable-speed 4
drive performance specifications 35

ejecting a cartridge 18
environmental requirements 37
error-correction code 26

E
ejecting a cartridge 18
environmental requirements 37
error-correction code 26

F
features 3
front panel display 15

data buffer 25

guidelines, handling and installation 6

H
handling precautions 6
head positioner, description 3

I
injected noise 38
inspecting the drive 7
installation guidelines 7
installation instructions
 internal drives 8
 preinstallation requirements 7
tabletop drives 12
installing the LTO driver 14
intelligent data compression 29
 description 3
interface, description 3
internal drives
 guidelines and cautions 6
 installation instructions 8
 mounting 9
 quick-start checklist 64
 registering 14

L

layout of track 23
loading a cartridge 18
LSI circuitry, description 3

M

mean time between failures 39
method of recording 25
mounting, internal drives 9

N

native data transfer rate, description 3

O

overview 1

P

physical specifications 32
platforms, supported 3
power specifications 34
preinstallation requirements 7

Q

quick-start checklist
 internal drives 64
 tabletop drives 65

R

read channel, description 3
recording method 25
registering tape drive 14
regulatory compliance 67
reliability 38
RISC processor, description 3

S

servo-tracking faults 27
slow backups 54
SmartVeirfy, description 3
specifications
 drive performance 35
 environmental requirements 37
 injected noise 38
 LTO cartridge 39
 mean time between failures 39
 physical 32
 power 34
 regulatory compliance 67
 reliability 38
 supported platforms 3

T

tabletop drives
 installation instructions 12
 quick-start checklist 65
tape drive
 registering 14
 troubleshooting 50
tape picking, description 3
TapeAlert
 description 3
 messages 60
track layout 23
troubleshooting 42

U

unloading a cartridge 18
unpacking the drive 7

V

variable-speed data transfer,
 description 4
write-protecting a cartridge 18